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Bethe ansatz for highe,r spin eight-vertex models 

Takashi Takebet 
Department of Mathematical Sciences, The University of Tokyo, Hongo 7-3-1. Bunkyo-ku, 
Tokyo, 113 Japan 

Received 2 May 1995, in final form 26 July 1995 

Abstract. A generalization of the eight-vertex model by means of higher spin representations of 
the Sklyanin algebra is investigated by the quantum inverse scattering method and the algebraic 
Bethe ansatz. Under the well known string hypothesis low-lying excited states are considered 
and scattering phase shifts of two physical particles are calculated. The S-matrix of two-particle 
states is shown to be proportional to the Baxter’s elliptic R-matrix with a different elliptic 
modulus from the original one. 

Dedmfed lo the memory of A l a d e r  A Belob 

Introduction 

In this paper we consider a generalization of the eight-vertex model by means of higher spin 
representations (spin e )  of the Sklyanin algebra [30] on a space of theta functions [31]. This 
model has a (2L + 1)-dimensional state space on each vertical edge and a two-dimensional 
state space on each horizontal edge. 

The relation of the eight-vertex model to the SOS type model was established by Baxter 
[5]. A similar relation also holds in our case and, using this relation, we can pursue-the 
quantum inverse scattering method and the algebraic Bethe ansatz, following [24,37,38]. 
In the first part of this paper, we examine Bethe vectors and give a coordinate expression 
for them in terms of Boltzmann weights of SOS type model. We also prove a sum rule 
of rapidities of quasi-particles, which was proved for the eight-vertex model by Baxter [3] 
who made use of a functional equation as an alternative to the Bethe ansatz. This rule is 
related to the parity of Bethe vectors. 

A higher spin version of the SOS type model was constructed by Date et al [9, 19,8] using 
a fusion procedure’[23,7,40,17]. Recently Hasegawa 1151 showed that a representation of 
the Sklyanin algebra obtained by a fusion procedure repeated 2e - 1 times is equivalent 
to the spin .t representation on a space of theta functions 1311. Hence, in principle om 
model is equivalent to the higher spin SOS model developed by Date and others. The use of 
representations by Sklyanin [31] makes it possible to compute the eigenvectors of transfer 
matrices explicitly and to apply the quantum inverse scattering method and the algebraic 
Bethe.ansatz directly (cf [SI). 

As is shown by Baxter [4]. the transfer matrix of the eight-vertex model contains 
the Hamiltonian of an anisotropic Heisenberg magnetic chain (the XYZ model) [16]. Our 
model is also related to a quantum spin chain model with (24+ 1)-dimensional local quantum 

1 Resent address: Department of Mathematics, University of California. Berkeley, CA94720. USA. 
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spaces. However, in general the transfer matrix of our lattice model does not give local 
Hamiltonians directly because the dimension of the auxiliary space is fixed to two. In order 
to write down the Hamiltonian of this spin chain, we must use the fused transfer matrix 
corresponding to a (2 + I)-dimensional auxiliary space. More generally we can construct 
a model with arbitrary spins on quantum and auxiliary spaces by fusion procedure. We will 
study such models in the forthcoming paper. 

Note that the Bethe vectors constructed above give eigenvectors of these models 
simultaneously under the assumption of non-degeneracy, since transfer matrices with 
different auxiliary spins are mutually commuting [23]. 

Though momenta and Hamiltonians of spin chains are calculated from the transfer 
matrices of fused models, S-matrices (phase shifts) of spin waves do not depend on the 
auxiliary space. In the second part of this paper, we calculate a two-particle S-matrix of 
spin waves from Bethe vectors obtained above, following the recipe by Korepin [21], and 
Deshi and Lowenstein [lo]. The result confirms Smirnov’s conjecture [12] which states 
that this S-matrix should be given by an elliptic R-matrix, the elliptic modulus of which is 
different from that of the original R-matrix in the definition of the model. 

Corresponding results were established for the totally isotropic models (the XXX model) 
and its higher spin generalization, by Faddeev et a1 [38,36,2,1] and for the XXZ model 
(the six-vertex model) and its higher spin generalization, by Sogo et d [32,20]. The free 
energy of the eight-vertex model was obtained by Baxter 131 and the low-lying excited states 
were studied by Johnson et al [IS], but our calculation of the S-matrix seems to be new 
even for the eight-vertex model (1 = 1/2), though a partial result on the S-matrix for this 
case was calculated by Freund and Zabrodin [131. The algebraic Bethe ansatz was shown 
to be applicable to the higher-spin eight-vertex models in [34] and their free energy was 
calculated in [35]. 

This paper is organized as follows. In section 1 we begin with a review of the definition 
of the model and the generalized algebraic Bethe ansatz, following [34]. Then, giving a 
whole set of intertwining vectors explicitly, we write down coordinate expressions for the 
Bethe vectors in terms of them. A sum rule of rapidities of quasi-particles are presented 
which helps in solving the Bethe equations. The proof is given in appendix B. In section 2 
we study the thermodynamic limit of several Bethe vectors. The free energy i s  calculated 
in section 2.2 (tbis result was announced in [35]) and low-lying excited states are examined 
in section 2.3 under assumptions of string configurations. In particular we compute a two- 
particle S-matrix in section 2.3. We summarize the prerequisites for the Sklyanin algebra 
and its representations in appendix A. 

Section 1 and appendices are algebraic in nature, while in section 2 we do not give 
mathematically rigorous detailed arguments, since the goal of this section is to compute 
quantities of physical importance. In order to make this computation rigorous strict analysis 
is indispensable, which is beyond the scope of this paper. 

1. Description of the model and algebraic Bethe ansatz 

The model was defined and its eigenvectors constructed by the generalized algebraic Bethe 
ansatz in [34]. In sections 1.1 and 1.3 we briefly review this work since we change notation 
and normalizations. In section 1.2 we find the explicit form for a whole set of intertwining 
vectors which enables us to write down the coordinate expression for the Bethe vectors 
(section 1.3). Only the ‘highest’ ones of intertwining vectors (‘local pseudo vacua’ in the 
context of the algebraic Bethe ansae [37]) were used in [34] to construct Bethe vectors. In 
section 1.4 we show that the sum of rapidities of quasi-particles should satisfy an integrality 

i 
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condition. This comes from the quasi-periodicity of theta functions and is therefore absent 
in the case of models associated with trigonometric and rational R-matrices. 

1.1. Definition of the model 

The  model is parametrized by a half integer l and two complex parameters: an elliptic 
modulus r and an anisotropy parameter 4. In this paper we assume that the elliptic modulus 
is a pure imaginary number while the anisotropy parameter is a rational number: 

(1.1.1) 
r' i 

t r 
q = -  > ~ ~ - T = -  

where f > 0 and r ,  r' are integers mutually coprime. Moreover we impose a condition that 
r is even, r' is odd, and 2(2l i 1 ) ~  c 1. 

Now we define a lattice model of vertex type as in [34]. We consider a square lattice 
with N columns and N' rows on a toms, i.e. a periodic boundary condition imposed. States 
on the nth vertical edge belong to the spin ! representation space V, N of the Sklyanin 
algebra (see appendix A) while states on each horizontal edge are two-dimensional vectors. 
A row-to-row transfer matrix, T(A), of the model is defined as the trace of a monodromy 
matrix, T(A), in the context of the quantum inverse scattering method [37]: 

T(A) = T&(T(L)) = A N ~ A )  + DN(A) 
where the L operators, La@) ,  are defined by (cf (A.4)) 

(1.1 2) 

(1.1.3) 

pj(S')  = 1 @:.. 0 1 @ p y S " ) @  1 0  ... 63 1. (1.1.4) 

Elements of these act on a Hilbert space 31 = @:=, V,,, but non-trivially only on the nth 
component. Assignment of Boltzmann weights to vertices are determined by this L operator. 
The monodromy matrix is a 2 x 2 matrix with elements in End&), and the transfer matrix 
is an operator in En&(X). 

The partition function, Z(A), and the free energy per site, f (A), are 
Z(A) = Trx(T(A)") 

1 
NN'  -p f (A) - log Z(A). 

In the thermodynamic limit, N ,  N' + M, only the greatest eigenvalue, Am=, of T(A) 
contributes to the free energy 

- p f ( A )  = lim Llhmal (1.1.5) 

which was computed in [35]. We will recall this result in section 2.2 with details omitted 
in [35]. 

Remark 1.1.1. The above defined model is a homogeneous lattice in the sense that it 
is invariant with respect to vertical and horizontal translation. We can also define an 
inhomogeneous lattice by assigning different spectral parameter, hi, and different spin, ti, 
to each vertical edge. We have only to replace L,(A) in (1.1.2) and (1.1.3) by 

N+m N 
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= 1 8 . .  . 8 18 PVS'I 8 1 8 . .  .8 1. 

All arguments in sections 1.2 and 1.3 remain true with suitable changes, as is shown in 
[34]. Such models are important for the study of certain integrable systems [271. 

1.2. intertwining vectors, gauge transformation 

Intertwining vectors were first introduced by Baxter [SI, and given an interpretation as a 
gauge transformation in the context of the quantum inverse scattering method by Takhtajan 
and Faddeev [37]. Generalization to the higher spin case by means of fusion procedure 
was studied by Date et al [9,8,19]. Here we define intertwining vectors directly in the 
space of theta fucntions. They should be identified with those defined in [9,8,19], through 
Hasegawa's isomorphism [15]. 

Definition 1.2.1. Let k ,  k' be integers satisfying k - k' E (-U, -2 -k 2, . . . , U - 2, Z), 
and h, s = (s+, SL) be complex parameters. We call the following vectors &,e(% s) = 
A , ~ ( A ,  (o . s ) ( z )  E o$+ intertwining vectors of spin e: 

(1.2.1) 

Here B(z)  = BW(z; z) (see (A.l)), and ak# = exp[2rr it(k + k')q](it-1/2e~p[~ i(s+ - 
$-)I)+, 

Following [37], we introduce a matrix of gauge transformation Mk: 

B1l(-it(s+ - A+Zkq);Zit) BII(-it(s- +h+Zkq);Zit) 
BOl (-it (s+ - A + 2kq); zit) BoI (-it(s- + 1 + u tq ) ;  2it) 1 

1 exp[-$(s+ - ~ + u t q -  &)*I 0 
0 exp[-?(s- t h + 2kq - &)*I 

Mk(h; s) = 

(1.2.2) 
x (  

where 

Let us define a twisted L operator by 

(1.2.3) 

(1.2.4) 
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Proposition 1.2.2. Each component of La.&, acts on the intertwining vector as follows. 

where &k' &JO; s) and W is the Boltzmann weight of SOS type [5,9]: 

(1.2.5) 

(1.2.6) 

(1.2.7) 

(1.2.8) 

In [341, vectors = @n+zem,n+u(m-l)(s) were called local vacua. For these vectors 
the formulae (1.2.5) reduce to 

(1.2.9) 
(1.2.10) 
(1.2.1 1) 

This property is important for algebraic Bethe ansatz. 

Remark 1.2.3. Denoting the column vectors of Mk by @k,k*l(A;s), Mk = 
( h , k - i ( A ;  s), $bk,k+j(k s)), one can rewrite (1.2.5) as follows: 

Namely q5 and intertwine the vertex weights and the SOS weights. This is where the name 
'intertwining vector' comes from. See [5,9,141. Note that @j!L$(A; s) are proportional to 
the column vectors of Mk under the identification (A.9). 
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1.3. Generalized algebraic Bethe ansatz 

In this section we recall the construction of the eigenvectors of the transfer mahix by means 
of the algebraic Bethe ansatz, following [34], and give several properties of them. Hereafter 
we assume that M:= Ne is an integer. 

First introduce a modified monodromy matrix twisted by gauge transformation: 

andfundamental vectors in H: 

IaN.aN-ll...,ai,ao):= ~ ~ Y N , B N - ,  @4al,co (1.3.2) 

where = &,,b(O; s) are intertwining vectors defined by (1.2.1). We fix a value for the 
parameter s = (s+, s-) and suppress it unless it is necessary. A pseudo vacuum, S2& is a 
fundamental vector characterized by 4 = a, a; - ai-1 = 21 for all i = 1,. . . , N: 

Q$ = la + 2Ni, a + 2(N - 1)L, . . . ,a + 2i, a). (1.3.3) 

This vector satisfies 

(1.3.4) 
(1.3.5) 
(1.3.6) 

by virtue of (1.2.9&(1.2.1 I) ,  respectively. 
As is shown in 1341, the algebraic Bethe ansatz for our case leads to the following: 

Proposition 1.3.1. Let v be an integer, A I , .  . . , A M  complex numbers. Define a vector 
'J%(AI,...,AM) E H by 

Q U ( A i , .  . . , A M ) : =  B,+i,,-i(hi)B~+~.u-z(A2). . . & + M , , - M ( A M ) Q $ - ~ .  

Then '3u (Al ,  . . , , A M )  is an eigenvector of the transfer matrix T(A) with an eigenvalue 

(1.3.7) 

provided that v and [ A i ,  , . . , A M ]  satisfy the following Bethe equations: 

(1.3.8) 

forall j = l ,  ..., M. 
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The proof is the same as that in [37]. We only recall the periodicity of the vector 
with respect to a, which is the reason that we do not have to take an infinite s u m  in the 

Recall that q is a rational number r‘/r.  Therefore 2(k + r ) q  = 2kq (mod 2).  This fact 

‘G+r,k,+r(A) = ‘&(A) (1.3.10) 

in particular, Ek+r,y+,(A) = Ek,k.(A). Similarly one can prove r$k+r,y+, = r$k,k,. This proves 

The eigenvalue (1.3.8) is written in a compact form in terms of a function Q(A) defined 

Proof. 

definition of Q,. 

and quai-periodicity of theta functions imply Mktr = M k .  Hence (see (1.3.1)) 

@o+r(Al,. . AM) = Q a ( A 1 , .  . ., AM). 0 

by 

The eigenvalue of the transfer matrix for a Bethe vector U&, , . . . , AM) is 

(1.3.11) 

(1.3.12) 

where h(z) = (2Ol1(z))~. The Bethe equations (1.3.9) can be interpreted a the condition 
of cancellation of poles at Aj of the right-hand side of the above equation. This observation 
is due to Baxter 131 and a starting point of Reshetikhin’s analytic Bethe ansatz [%I. We 
essentially use this observation to derive the sum rule in section 1.4. 

Because of the commutation relation Ek.k,+l(A) E ~ + I . ~ , ( c L )  = E k . k , + l ( ~ ) E k + t . r ( A ) ,  which 
is a consequence of relation (A.3), U&, . . . , A M )  does not depend on the order of 
parameters AI, . . . , AM, Moreover, we may restrict the parameters to the fundamental 
domain 

5 5 _ _  < I m A -  < -  , . . (1.3.13) “2 
-i f ReAj f $ 

2 
without loss of generality thanks to the following lemma. 

Lemma 1.3.2. Suppose (U. [ A I ,  . . . , AM))  is a solution of the Bethe equations. Then for 
any j ,  1 6 j 5 iw, 

(i) Y”(A1, . . . , A, + 1, . . . , A M )  is proportional to Q & l , .  . . , A j ,  ..., AM), and 
(U, { A I ,  . . . , Aj  + 1, . . . , A M ) )  is a solution of the Bethe equations. 

(ii) %+z(AI,.  . . , A j  + 5, . .. , A M )  is proportional to Y&I.. . . , A j , .  ..,AM), and 
(U + 2, ( A I , .  . . , A j  + 5 , .  . . , A y ] )  is a solution of the Bethe equations. 

Proof. The quasi-periodicity of theta functions implies that (U, {AI ,  . . . , Aj + 1. . . .,AM]) 
and (v + 2, [ A I ,  . . . , Aj + r,  . . . , A M ] )  are solutions of the Bethe equations. 

Substituting A + A+ 1 and A + A + s  in (1,1.4), we obtain 

L,(A+ 1) = -ulL,(A)ul 
L,(A + 5 )  = -e-’ir-2niW~,(~)u3 

In the same way (see (1.2.2)) 
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Hence from (1.3.1) follows 

Z,a.(A + 1; s) = (--1)NZ,a4A) (1.3.14) 

The (1,2)-component of (1.3.15) is Bt,k,(A+ 1) = ( - I )NBk,U(A) .  Thus 

Yv(A], . . . , Aj + 1, .  . . , A M )  = (-l)"Pv(A1, . . . , Aj,  ..., A M )  

which proves (i). The (12)-component of (1.3.15) is 

~ b , b t ( ~  + 5 )  =constant e-2ni(k+Y)~gt,~(h). 

Here constant does not depend on k ,  k', but depends on A, s+. Thus 

aP, (h l , .  . . , Aj + 5 , .  . . , A M )   constant e-Ti'"n@u(A,, . . . , A j , ,  

and 
,-I 

Yu+2(Al.. . . ,A i  + i, . . . ,AM) = constant ~ e 2 n i ( u + z ) u ~ - 4 n i 0 q ( P ~ ( A I . .  . . , A M )  
"=0 

= constant Yv(Al, A2, . . . , AM).  

This proves (i i) .  U 

Baxter developed the coordinate Bethe ansatz in [51, expanding eigenvectors into linear 
combination of fundamental vectors  la^, . . . ,UN). We have such a coordinate expression 
for the above defined Bethe vectors. Namely 

Proposition 1.3.3. Let Yv(Aj,. ._  , A M )  be as defined by (1.3.7). Then 

Here the sum in () is taken over a set of integers ai.] (0 6 i 5 M, 0 I - j 6 N) satisfying 
the admissibility condition 

0 .  I.) . - a .  e - ~ ~ j = * l  a..-@. 1.1 z.,--I €( - -2e , -Zf2  I . . .  * u - Z , z e }  
and the boundary condition, 

ao.j = aj 
ai.0 = a - i 

aM,j = a  - Ne + 2 e j  
ai,N = a -!- i. 

Note that the Bethe equations are not assumed here. 



X4a,+P,.o,4+E/--I @...@@o,+c,.LIO+eO. 

Applyinx this formula iteratively, we anive at (1.3.16). 

1.4. Sun rule 

In the previous section we defined Bethe vectors by (1.3.7). Here we show an integrality 
condition of sum of parameters A j .  

Theorem 1.4.1. 
assume that ( A j )  satisfy the following additional conditions. For any j = 1,. . . , M ,  

Let (U, ( A I , .  . . , A M ) )  be a solution of the Bethe equations (1.3.9). We 

(i) A j  
(ii) there exists a E-Z such that Aj +2aq f Ak 
(iii) (Technical assumption of non-degeneracy: see appendix B.) 
Then there exist integers no. nl which satisfy 

(2(n + e)? I n E Z); 
(mod Z+Zr)  for any k = 1,. . . , M .  

(1.4.1) 

The proof is technical and contained in appendix B. Note that assumptions (i) and (ii) 
in theorem 1.4.1 are satisfied under the string hypothesis in section 2.1. Assumption (iii) 
is hard to check. For string solutions considered in sections 2.2 and 2.3, (1.4.1) i s  checked 
directly. 

Baxter derived this rule in [3], directly constructing an operator on H which gives Q(A) 
(see (1.3.11)) as iis eigenvalue. Unfortunately we have not yet found such an operator in 
our context. (Kulish and Reshetikhin [22] found for a rational R matrix case that transfer 
matrix 'converges' to the Q operator by iteration of fusion procedures.) 

In addition, Baxter's~result tells us that E:, Aj is. related to pa+& of Bethe vectors. 
These parities are associated with reversing the arrows (U') or to assigning -1 to the down 
arrows (u3) of the XYZ spin chain model. They correspond to the unitary operators U1 
and U3 acting on the spin e representations (see appendix A). 

Lemma 1.4.2. For a = I ,  2,3, U" commutes with the L operator as 

U;'L(A)U, = (u")-~L(A)u'. (1.4.2) 

They commute with the transfer matrix: U;'T(A)U,, = T(A). 
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Proof. 
appendix A): 

Adjoint action by U, induces an automorphism X. on the Sklyanin algebra (see 

U;'L(h)U, = X,(L(h)) 
= Wo(h)pC(So) @U' + W.,(A)pe(S') @ U' 

--W&.)pe(Sb) €3 ab - Wc(h)pe(S') € 3 ~ '  

where (U, b. c) is a cyclic permutation of (1,2,3). By the anti-commutativity of the Pauli 
matrices, the right-hand side of the above equation is nothing but ( ~ ~ ) - ~ L . ( h ) u ~ .  

Commutativity T(h)Ua = U,T(h) is a direct consequence of (1.4.2) and (1.1.3). 0 

Operators U?" on 31 are involutive and commute with each other. In fact, by virtue of 
relations U," = (-I)~ and unub = (-l)'u&, we have 

( U y y  = ( - p i  = 1 
u : N u ? N  = ( -1 )ZNC 0 N  @ N  = ~ 0 N u 0 N  

'b b a '  

(Recall that N e  is an integer.) Therefore an eigenvalue of U:" is either fl or -1. Assume 
that Y E 31 is a common eigenvector of T(h)  and Un's. We assign parities U" and U' to Y 
by 

U y Y  = (-1)""W U y Y  = (-1)"'Y. 

From Baxter's result [3] and theorem 1.4.1, the following conjecture seems to be 
plausible. 

Conjecture 1.4.3. L e t  ( v ,  [A], . . . , h ~ ) )  be a solution of the Bethe equations, and U" and 
U' be parities of the Bethe vector Y&, . . . , AM) defined above. Then 

U +  v ' +  Nt = 0 

VT - 2 Aj U" + N e  (mod 2). 

(mod 2)  
M 

j = 1  

2. Thermodynamic Limit 

In this chapter we consider the limit N + CO. Our calculation is based on the siring 
hypothesis introduced by Takahashi and Suzuki [33] which we review in section 2.1. In 
section 2.2 we compute the free energy of the model. In section 2.3 we introduce four 
kinds of perturbation of the string configuration of the ground state. Each of them are 
parametrized by two continuous parameters which are regarded as rapidities of physical 
particles. We compute polarization of the Dirac sea of quasi-particles induced by these 
perturbation, following the recipe in Johnson et ul [IS]. We also calculate eigenvalues of 
the S-matrix of two physical particles, using the method developed by Korepin I211 and 
Destri and Lowenstein [IO]. The result coincides with Smirnov's conjecture [12]. 

2.1. String hypothesis 

First let us rescale the parameters so that integrals in later sections are taken over a segment 
in the real line. We denote xj = ithj. Then the Bethe cryations (1.3.9) take the form 
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while the corresponding eigenvalue i s  

(2.1.2) 

where x = itA. According to lemma 1.3.2, we may assume that IRe(xj)l < 1/2 for any j .  
Now the string hypofhesis [33] is stated in the following way. For sufficiently large N 

solutions of (2.1.1) cluster into groups known as A-sfxings, A = 1.2, . . .. with parity rt: 

where Imxf,' 0 (mod Zt) and Imx,!- = t/2 (mod 722). Complex numbers xf.' are 
called a centre of a string. Due to lemma 1.3.2 we may assume that Im,? = 0 and 
1mxA.- J = t/2. We denote the number of A-strings with parity i by U(A, &). 

Note that assumption (i) of theorem 1.4.1 is satisfied for A-strings with parity +, if 
A = 2 (mod 2) and for any strings with non-zero real abscissa. Assumption (ii) holds for 
A-strings, A < r ,  if real paris of centres of all strings lie in the interval [-l/2, 1/21, 

Since we are interested only in the thermodynamic limit N 4 03, we neglect the 
exponentially small deviation term O(e-6N) in what follows. 

2.2. Ground stare and free energy 

The result in this section was announced in [35]. The ground state configuration is specified 
as follows: U = 0, fl(2t, +) = .N/2, $(A, &) = jf(2t, -A = 0 for A # 2e and centres of 
2t-strings distribute symmetrically around 0. (Hence ~ j ~ ~ x ? ' +  = 0.) This is consistent 
with the result~of the X X X  type model by Takhtajan 1361, Babujian [2], that of the X X Z  
type by Sogo 1321, Kirillov and Reshetikhin I201 and that of the XYZ model by Baxter [3]. 

Multiplying the Bethe equations (2.1.1) for x j  = x,T"&', (Y = -e~+ 1/2,. . . , e - 1/2 
(cf (2.1.3)), and taking the logarithm, we obtain 

- xk; + . xk; 2i(m -t 

(2.2.1) 

where we omit the index (2, +) of x y  and function @ is defined by 

1 ell  (x + ipt; it) 
~ @ ( x :  ipt) = log - + K. 

I & l ( x  - ipt; it) 
(2.2.2) 
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We take the branch of O so that O(f1 /2 ;  ip) = ~ x ,  O(0; ip) = 0. Half integers QY in 
(2.2.1) specify the branches of logarithm. Applying Takhtajan-Faddeev’s argument [38] to 
DUI case. they satisfy QF - QFl = ~--1. W e  also assume that the xj  are ordered by j: 
xj > xj-1. (Note that O(x; ipl) is a decreasing function by lemma C.2.) 

We assume that cen&es of 2e strings fill in the interval (-1/2,1/2) with density p(x) 
in the limit N -+ CO, 

I 
N(xj+l - xj) 

-+ p(x) xj + x  N --f 00. 

Subtracting (2.2.1) for j from that for j + 1 and taking the limit, we obtain an integral 
equation 

e-iiz 

*=--c+1/2 
~ ‘ ( x ;  zi(a + e)qt) = -2n;o(x) 

(2.2.3) 
) 

112 2 - 1  2 - 1  

O’(x - y; 2impt) + @’(x - y; Zi(m + 1)qt) p(y) dy. +L2 (2 m=O 

This equation is easily solved by Fourier expansion. Using formula (C.2), we have 

(2.2.4) 

Let us compute the eigenvalue for this Bethe vector. The expression of the eigenvalue 
(2.1.2) consists of two terms: 

(2.2.5) 

and the eigenvalue is t(x) = AI (x) + hz(x). Both A, and A2 contribute equally to t(x) 
in the thermodynamic limit N + 00 for e > 1/2, since 
1 AI  - log - 
N 

-2xi. 
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In the case of the eight-vertex model (e = 1/2) for h > 0, A1 is dominant in magnitude, 
because 

011(x - xj - 2iqt; it) 
N Az & I ( X  - iqt : it) +--Clog N, 0 l l ( x  - x i  + 2iqt; it) 
1 AI - log - = log 0 l l ( x  + iqt; it) 1 

(2.2.6) 

the real p m  of which is positive. (Recall that x = ith, h > 0.) This is a’subtle difference 
between e = 1/2 and higher spin cases, but the final result does not differ much. Namely, 
in the thermodynamic limit, 

Substituting (2.2.4) into this, we obtain the free energy (1.1.5): 

-Bf(h) = (constant)+log011(h+2eq;s) -2nt(h-  q)(1 - 4 t q )  

(2.2.8) 
sinhxnt(l-4eq) sinh2nnt(h - q) 

n sin hnntcos h2rrnqt 2 “4 

Here (constant) is an unessential term which does not depend on h. 

2.3. L.ow-lying excitations and S-matrices 

As is seen in section 2.2, the ground state consists of N/2 2t-strings filling the Dirac sea. 
In this section we perturb this Dirac sea, slightly changing the string configuration. Since 
we are interested in the two-particle states, we choose such configurations that reduce 
to two-particle states of models associated with trigonometric and rational R-matrices 
[38,36,20,2,32]. 

 let^ us consider the following configurations: 

(I) tt(Z, +) N/2 - 2, ti(Z - 1, +) = 1, + 1, +) = 1 
( I I )$(21,+)= N/2-I , t t (21-1 ,+)=1,II ( l , - )= l .  

We call the Bethe vectors specified~ by these data excited state I and II respectively. 
In the higher spin XXX case [36], for example, two-particle states are specified by 
similar configurations; one (singlet) is the same as I above, the other (triplet) is defined 
by #(Z, +) = ~ N / 2  - 1, #(2e - 1, +) = 1. Since one-string with parity - goes to infinity 
when f tends to 00, we can expect that excited state II reduces to the triplet state in the 
rational limit. As a matter of course, when = 1/2, the ( 2 t  - l)-string~is absent. Hence 
the following argument needs to be modified, but one obtains results for e = 1/2 by simply 
putting e = If2 in formulae for general 8. We do not mention this modification. 

2.3.1. Excited state I. Now we consider the excited state I. We omit the plus sign 
designating the parity, since all strings have parity +. Multiplying the Bethe equations 
(2.2.1) for a U- string xj = x z ,  a = - e+  1/2, . . . , t - 1/2 with the centre x y ,  and taking 
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2e-1/2 

m=1/2 

2e+i .  + ( @ ( x y  - x+ ,2imqt) + @(xi” - x y ;  2i(m + 1)qt ) )  (2.3.1) 

where x:~” are the centres of the (2t  f 1)-strings, 

(2.3.2) 

The argument of [38] applied to (2.3.1) implies that there are N/2 vacancies for QYj”’s. 
Thus there remain two vacancies (holes) left unoccupied by centres of 2t-strings. 

We renumber the centres of smngs as follows. 
(i) U-strings: xj,  j = 1.. . . , N/2, j ,  # j l ,  j z ,  where Qf and Q f  correspond to holes. 

(ii) 2e - 1-string: x- ;  and 
(iii) 2t  + 1-string: x+. 
In the thermodynamic limit centres of 2t-strings fill the interval (-1/2, 1/2) 

continuously with density p ~ ( x )  and two holes at X I  = limxj, and x2 = limxi,. (We 
abuse indices.) Subtracting (2.3.1) for j kom that for j + 1, we obtain 

Following the argument in (2.3.1) again, we assume that xj z xy if j > j‘;  

for large N. The solution of this integral equation for pdx) is 

(2.3.4) 

where p ( x )  is defined above, a ( x )  and o + ( x )  are solutions of the following integral 
equations. 

1 
N 

p1(x) = p ( x )  + -(u(x - ~ x l )  + u(x - x 2 )  -I- W A X  - x - )  + o+(x - x+)) 

Integral equation for d x ) :  

(2.3.5) 

1 - 1  

m i 0  
@”(r - y; 2 i m q t ) + x  Q’(x - y ;  2i(m + 2rra(x) = -2zS(x)+ 
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Integral equation for u-(x): 

Integral equation for o+(x): 

(2.3.6) 

(2.3.7) 

They are easily solved by the Fourier expansion explicitly: 

sinhnnt sinh2nn1p 
cos 2nnx (2.3.8) 

I m  
u ( x )  = -- - . 

n=l sin hnnt(1 - 4eq) sin h4nneqt cos h2nnqt 

2t - 1 2sinh2nn(2e - 1)qt 
sinh4nnLqt 

cos Znnx w-(x) = -- - 
2e “=I  

CO Zsinhant(1 -2(Ze+ 1)q) 
o+(x) = -1 - cos2nnx. 

sinhnnt(1 - 4eq) “4 

(2.3.9) 

(2.3.10) 

The product of the Bethe equations (2.1.1) for the (Ze - 1)-string x- + Zicuqt, 
CY = -e + 1, . . . , L - 1, gives the equation: 

N 
L+1 

Cf=-e+1 

@(X-; 2i(a +e)qt) = 2ir~lL-I - ( 2 ~  - 1)4nq(u +2x1) 

N I 2  2 -312  

+ 

+C(@(x--x + ; 2imqt) + @(x- - x+; Zi(m + 1)qt)). 

(o(x- - xk; 2imqt) + ~ ( x -  - x k ;  2i(m + 1)qt))  
k=l.k#j,.j2 m=I/Z 
Ze-I 

(2.3.11) 

This time there exists only one vacancy for Q?’ which determines the branch. We set 
Q?’ = 0. In the thermodynamic limit equation (2.3.11) gives an integral equation: 

m=1 

This equation reduces to 

by (2.3.4), (2.2.4), (2.3.8)-(2.3.10) and (C.1). 
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On the other hand, the product of the Bethe equations (2.2.1) for the (ze + I)-smng 
x+ + 2 iolqt, a = -e,  . . . , e, gives the equation: 

N 
e 

u=-e+i 
Q(x+; %(or + e)qt) = 2rr QY+' - (2e + 1)4xq(v -k 2&) 

Again only one vacancy for Q Y 1  which determines the branch exists. We set QY+' = 0. 
The integral equation in the thermodynamic limit given by (2.3.14) is 

1 
N 2 4(x+; 2i(i + e)qr) = --oe + 1)4nq(w +2z1) 

m=-e+i 

+ /'/' y ( 4 ( x +  - y; 2imqr) + Q(x+ - y; 2i(m + l)qt))pr(y)dy 
-112 m=1/2 

and hence 

OJ+(Y) dy +xi: - - + x2 - - (I - w e +  - (ze + ~ ) ~ q  (2.3.16) 
2 

by (2.3.4), (2.2.4), (2.3.8)-(2.3.10) and (C.1). 

of the Dirac sea of 2e- strings for excited state I is.defined by 
Let us denote the solution of the Bethe equations for the ground state by x:. Polarization 

(2.3.17) 

where x = lim+,,x,. (See [21,18].) Subtracting (23.1) from (2.2.1) and using the 
integral equation (2.2.3). one can derive the integral equation for J(x): 

U-I 
- (g 4'(x - x,; Zimqt) + @(x -xa; Zi(m 4- 1)qt)  

u=1.2 m=O 

Thus the polarization is determined as 
J ( X )  = C J n e W i n x  

"a 
(2.3.19) 

(2.3.20) 
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e-2ninxi + e-2ninxr ) . (2.3.21) 

sinh2nn(2e - 1)qt 
(e - 2 cos h2irnat 21r in sin h4nneqt 

- + 
.I, = 

sinhnn(1 - 2 ( Z +  1)q)t 
2ninsinhnn(l -4Cq)t (e 2cos h2nnqt 

On the other hand, by the definition of the polarization (2.3.17), 

Combining (2.3.20) and (2.3.22). we obtain 

XI + X 2  

2 
X+ - - =.(I - 4eq)z1 - 2 e ~ .  (2.3.23) 

Now we determine x* in terms of X I ,  xz regarded as free parameters. We have derived 
three equations connecting XI, xz and x+: (2.1.13), (2.3.16) and (2.3.23). From (2.3.13) 
and (2.3.23) follows 

1 o-(y)dy =O.  (2.3.24) 

Thus x- = (XI + xz)/Z, since o-(y) c 0 because of (2.3.9) and lemma C.2. Equations 
(2.3.16) and (2.3.23) imply 

x_-x, 

--x-+x, 

or, equivalently, 

21 *+-XI 

dy = -U- J -1++x2 (o+(~)+-) 1 -4e7 

(2.3.25) 

~. (2.3.26) 

Equation (2.3.26) shows that x+ is uniquely determined for each U because of lemma C.2. 
Constraints (2.3.23), (2.3.26) and (1.4.1) on U. x+ and CI are simultaneously satisfied if we 
put 

r kr' x1 f x z  + g 
U = k (? - (2e+ 1 y )  

2 XI = (Z + 1)- x+ = - 
2 .  2 

where k is an arbitrary integer. Recall that r is assumed to be even. Apparently there are 
infinitely many solutions, hut in fact only two Bethe vectors are independent in this series. 

Lemma 2.3.1. For two integers k,  k' such that k = k' (mod 2), corresponding Bethe vectors 
are linearly dependent. 

l"'oof. 
(u(k'),  x+(k')) respectively. Then 

Let us denote U and x+ corresponding to k and k' by (u(k) ,x+(k) )  and 

k - k' 
V(k) - V(k') = -(2C + I)(k - k')r'+ T i -  

L 
-(2l+ l)(k - k')r' (mod r )  
k - k '  , 

X+(k) - ~ + ( k ' )  - r .  
2 

Shifting x+ by one means shifting 2e + 1 of solutions of Bethe equations by one. The 
lemma is proved by lemma 1.3.2. 
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If we take k = 0, then U = 0, CI = 0 and x+ = ( X I  + x2)/2. We call the Bethe vector 
corresponding to this configuration excited state b. 

Since r and r’ are coprime, there exists an integer k such that kr‘ 1 (mod r) .  Shifting 
x+ by an integer, we may assume that x+ = (XI + xz ) /2  + l / 2  with a suitable U. (See 
lemma 1.3.2.) We call this Bethe vector excitedstate 11. 

It Seems that there are no other solutions for x+ and U, since the integrality conditions 
(U E Z and theorem 1.4.1) are very strong. 

2.3.2. Excited state II. Now we consider the excited state 11. As in the case of the 
excited state I, multiplying the Bethe equations (2.2.1) for a U-string xi = x F ,  
(y = -e + 1/2, . . . , e - 1/2 with the centre x , ? ,  and taking the logarithm, we obtain 

L - V  

a=-t+1/2 
N 4(xj2P.+; 2i(a + ~ q t )  = 2nQy + aireq(v +2xn) 

1 8,1(x + ip!; it) 
I 

Y(x; ipt) = T log eo, (x  - ipt; it) ’ 
(2.3.29) 

By the same argument as for the excited state I, there are N/2+ 1 vacancies for Q7.s. 
Thus there are again two holes of centres of 2t-strings. 

We renumber the centres of strings as follows. 
(i) 2-strings: x l ,  j 5 1,. . . , N / 2  + 1, j # j l ,  j z ,  where Qf and Q g  correspond 

to holes. Following the argument in (2.3.1) again, we assume that x i  > xi, if j > j‘. 
The string with its centre at xN,z+I will be placed at the zone boundary x = 1 /2  in the 
thermodynamic limit. 

(ii) (2t - 1)-string: x-. 
(iii) I-string with parity -: xo + l i t  
As in the previous case, we obtam an integral equation for the density of centres of 

2C-strings, p l ~ ( x ) ,  on the interval (-1/2, 1/2) 

? ’  



Bethe ansatz for higher spin eight-vertex models 6693 

I 
+ - W ( x  - xo; 2i(2t +~ljqt)  + W(X - X O ;  2i(2t - 1)qt) (2.3.30) N 

for large N. Its solution is 

(2.3.31) 

where p ( x )  ((2.2.3), (2.2.4)), U(* )  (2.3.5), (2.3.8)). w-(x)  ((2.3.6), (2.3.9)) are as defined 
before, and U&) is a solution of the following integral equation: 

1 
N prr(x) = p ( x ) + - ( u ( x - n l ) + u ( x  - X 2 ) + O - ( X - x X _ ) + O o ( X - x o ) )  

(2.3.32) 

It2 2 - 1  ze-1 

~ R W O ( X )  = /" ( O'(x - y; 2imqt) + Q'(x - y ;  2i(m + 1)qt) 
-112 m=l m=O 

+Y'(x: i(2t + 1)qt) + W ( x :  i(2t - 1)qt). 

Explicitly, % ( x )  is 

(2.3.33) 

The Bethe equations (2.2.1) for the (2e - I)-string gives the equation: 

@ ( L ;  2i(u f Oqt)  = 2nQ?-' - (2 - 1)4nq(u + 2x11) 
e+ I 

N 
U=-C+I 

N/Z+I 2-312  

k = l , # h , n  m=I/,Z 
+ 
+ q ( x -  - XO; 21tqt) + Y(x- - XO; 2i(l - 1)qt).  

( ~ ( x -  - xk; 2imqt) + ~ ( x -  - x k ;  2i(m + 1)qt))  

(2.3.34) 

We set e?-' = 0, since there is only one vacancy. The corresponding integral equation in 
the thermodynamic limit is 

1 
O(x- ;  2i(a + t ) r~ t )  = --(2l - 1)4nq(u +2&) 

N 

L+1 

n=--l*, ... 
+ /'Iz y ( @ ( x -  - y ;  2imqt) + @(x- - y :  2i(m + I)qt)jpn(y) dy 

-It2 m=1/2 

I 
+-(Y(x- - xo; 2ilqt) + Y(x- - xo; 2i(t- 1)qt)).  (2.3.35) N 

This equation reduces to 

as before. 
The Bethe equations (2.2.1) for the 1-sving with parity - gives the equation: 



6694 T Takebe 

Again we choose the branch QA- = 0. The integral equation is 
1 

N 
'u(x0;  2ieqt) = --4nq(v + 2ClI) 

+ ~::(WXO - Y ;  i(2e + 1 ) ~ )  + WO - Y; i(2e - I)vt))p~~Lv) dy 

1 
+ T ( Y ( ~ o  - X-;  2ieqt) + Q(x0 - x-; 2i(e - 1)qt)). 

1 oo(y )  dy = -2r1(2&1+ 0 (2.3.39) 

Let us compute the polarization J ( x )  of this state. Subtracting (2.3.27) from (2.2.1) and 

(2.3.38) 

This is rewritten as 
xo-XI 

-%"+*a 

using the integral equation (2.2.3), we can derive the integral equation for J ( x ) :  

Hence the polarization is 

J ( x )  = JneW"" 
n a  

(2.3.41) 

X 1 2e-1 4e - 1 
4e 2 2e Jo = -- + V(U + 2&) - - - - x- + 7 (XI + 12)  

J. = 

(2.3.42) 

~~ 

sin hZnn(2e - 1)qt 
sinh4nneqt 

-e-x in + e-2ninxl + e-2ninxt e-2ninxo 
e-2ninr- - - 

2coshknqt  sinhnnt(1 -4eq) 
(- e -rin + e-z"inxI + e-2ninxr ). (2.3.43) 

sin hnn(1- 2(2e + 1)q)t 
( 

2e ll/z 
+2cosh2?rnqtsinhnn(l - 4eq)t 

On the other'hand, by the definition of the polarization (2.3.17), 
112 

J ( X ) ~ X  = zIr - (2e - 1 ) ~ -  --x0 -e+ze(xi +xZ). (2.3.44) 

It follows from (2.3.44) and (2.3.42) that 

(2.3.45) 

From (2.3.36) and (2.3.45) follows the same equation as (2.3.24) and thus x- = 

XI + x 2  

2 xo - - = (I - 4eq)-zI1 - Z V ~ .  

( X I  + xz)/2 as in the case of the excited state I. Equations (2.3.39) and (2.3.45) imply 

(2.3.46) 
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This equation is uniquely solved because of (2.3.33) and lemma C.2: xo = (XI +xz)/2-v/2.  
Len& 1.3.2 tells that only~ two cases give independent Bethe vectors: (w = 0, xo = 
(XI + x2)/2) which we call excited state IIo and (U = 1, xo = (XI + x2)/2 + f) which we 
call exeited state HI.  ' 

Table 1. Two-particle excited states. 

Excited ze-stings 
states parity+ 

In density pr 

I1 densily PI 

IIn density pn 

111 density p11 

holes XI, KZ 

holes KI, K2 

holes XI, x2 

holes XI. x2 

S-matrix. Above we found four excited states with two free parameters XI, q: b, It, IS, 
111. In the rational limit, E + CO, q + 0, qt fixed, the string configuration of IO becomes 
that of the singlet state of the corresponding spin chain, whereas the configurations 11, Ib, 
11, seem to approach that of the mplet states, since the onestring with parity - and the 
string with abscissa x+ = (XI +XZ + l)/2 goes beyond the sight. (Recall that real abscissas 
of strings are rescaled so that they fill the whole real line in the limit.) Hence one might 
expect that these four Bethe vectors give four-dimensional space of two physical particle 
states (spin waves) of the corresponding spin chain. In fact for the eight-vertex model 

log?'(x)l,&smte - lOg?'(X)lgrOund swte = logs(x - iqt -xl)+logs(x - iqt -XZ)  

where (excited state) means any one of the'excited states IO, 11, 110, U1 and 

(2.3.47) 

sin 2xnx m ni 
2 Il=l n cos h2nnqt 

logT(x):=---nix- iC (2.3.48) 

(see [18] for details of calculations). This means that all conserved quantities such.as 
momentum P(x) or energy over the ground states are split into two terms: 

sin 2irnx 
n cos h h n q t  

m 

P(x) = -7rx - 
"=I 

and thus we can regard these excited states as two-particle states of the X Y Z  spin chain. 
For higher spin cases we have not yet computed fused transfer matrix which corresponds 

to the spin chain with local interaction. From the result of the rational and trigonomeric 
models [36], [20], we conjecture that the momentum and the energy of physical particles 
do not depend on the spin e .  Based on this conjecture, we calculate the S-matrix of two 
physical particles. 

As is discussed in [ l l ] ,  the S-matrix of physical particles (spin waves) could depend 
on the way of calculation for the case of higher spin. In order to make our standpoint clear, 
let us recall the calculation of eigenvalues of the S-matrix in more detail, following [21] 
and section 9 of [25] (cf also [lo], [38]): 7' e appearance of an integer QY in (2.3.1) and 
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(23.27) can be interpreted as a consequence of the periodic boundary condition which we 
imposed on the lattice. Namely, if we move a physical particle around the whole chain, 
the total phase shift of the wavefunction accumulated should be an integer multiple of 2ai. 
The main contribution comes from the momentum P of the particle as iP N, the free phase: 

sin2nnx 
n cos h2nnqf ' 

m 
i P N = - i N n x - i N C  

"=I 

Note that the right-hand side of the above equation is eventually expressed as the 
logarithm of (the right-hand side)/(the left-hand side) of the Bethe equation for the ground 
state (2.2.1): 

2-112 

u=-1+1/2 
- iN c @(x; 2i(u + Ljqt)  

e-112 
N - m  + - iN @(x; 2i(a + L)qt)  

Hence the ground state can be interpreted as a Dirac sea of non-interacting particles, since 
the momenta of particles are integer multiples of 2n/N because of (2.2.1) and the above 
equation. 

For the excited state, however, the phase shift comes not only from this free phase 
but also from the interaction between physical particles. Because of the periodic boundary 
condition which fixes the total phase shift to an integer multiple of Zri, this means that 
calculating the scattering phase shift of a physical particle is equivalent to the calculation of 
0 ( 1 / N )  shift of the momentum. In other words, the S-matrix of physical particles can be 
calculated by splitting the total phase shift, an integer multiple of Zni, into the free phase 
iPN of order O(N) and the scattering phase of order O(1). 

We consider the excited state I first. The total phase shift for the physical particle with 
rapidity X I  can be read off from (2.3.1) as follows: 

L-112 

cl=-z+1/2 
- N @ ( X I ;  Zi(u + e)qr)  + g a t q ( u  + 2x1) 

(y @(XI-  x:e; 2imqr) + 

(@(xi - x1'-'; 2imqt) + @(XI - x?-'; 2i(m + 1)qt))  

ze-1 

+ @(xi -xi'; 2i(m + 1)qt) 
b=I m=i m=0 

2L-31? 

+ 
m = i / 2  

which is equal to an integer multiple of 2rri because of (2.3.1). Subtracting the free phase 
contribution i P N  (2.3.49) from the total phase (2.3.50), and taking the limit N + CO, we 
obtain the remainder of order 0(1) and thus we can interpret it as the scattering phase shift 
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from the above argument. An explicit expression for the eigenvalue of the S-matrix for the 
excited state I is as follows: 

ilog(fSI(xl - x2) )  = -8xeq(v + 2&) 

+NS_:: (g Q ( i I  - y; 2imqt) 

+ *(xi - Y ;  2i(m + 1 h t )  M Y )  - ,dy))dy 1 22-1 

m=O 
2t-312 

m d j 2  
Z L - l j Z  

m=1/2 

+ (Q(xi - x-; 2im7t) + @ ( X I  - x- ;  2i(m + 1)qt))  

+ (@(xi - x+; 2imqt) + @ ( X I  - x + ;  2i(m + 1)qt)) .  (2.3.51) 

The term -8nequ can be interpreted as an effect from the background or boundary, while 
the rest of the right-hand side comes from interaction of pseudo-particles. The ambiguity 
of sign comes from normalizations of asymptotic states. .The right-hand side i s  computed 
by integrating (2.3.5X2.3.7): The result is 

sinhnnt(1 - 4eq - 27) m 
ilog(*si(x)) = 

"=I ( n sin . hnnt(1 - 4e7) cos h2nnqt 
sin hitnt(4eq - 27) 

n sin h4nneqt cos h2nnqt 
sin 2nnx + .  

sinhnnt(2q - (1 - 4e7)) . sin nn(x - E )  +5 n=I sinhnnt(1 -4t7) (2.3.52) 

where E is 0 or 1 for the excited state 10 or 11, respectively. The first term of the right-hand 
side come from holes (u(x - x2) in pr(x) - p(x )  of (2.3.51)), the second term from the 
(2e- l)-stzing (w-(x - x - ) )  and the last term from the (2e + 1)-string (w+(x - x+)). 

Computation for the excited state I1 is the same. The result is 

,.-. 
sin 2nnx 

sin hnnt(4e7 - 27) 
+n sin h4nnEnt cos h2nnnt 

2 s i n h n n t ( 4 t ~  -27) , sin nnx '5 n=I sin h4nneqt 
s i n h k n q t  +n+nx+C , sin nn(x - E )  

"=I sinhnnt(1 -.le<) (2.3.53) 
, .  

where E is 0 or 1 for the excited states 110 or 111, respectively. As in the case of the excited 
state I, the first term of the right-hand side come from holes, the second term from the 
(2e - I)-stAng and the last term from the onestring with parity - (w& - xo)). 

We fix the signs left undetermined so that the above S-matzix is the permutation matrix 
in the non-interacting limit x = 0 and the excited state 10 reduces to a singlet while the 
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other three states form a triplet as in the rational and trigonometric cases. Then, 

where 

and function S ( x ;  p )  is defined by 
sin hirnt (p  - Zq) 

n sinhnntp cosh2Jmiq 

m 

sin 27cn iht 

- - 
( ~ 7 ~ p - A ;  P’L, q4)m(p-’++/1; P K ~  q4)m(q2pA; P’? q4)m(q2p‘+’; P’L, q4)00 
rq4 (; + +) rq4 (1 - +) 
rq4 (4 - +) rq4 (1 + $) 

- - 

m rqs (i + ~y rq4 (I + 9) rq4 (T) 
x n  (2.3.56) 

where p = e-=’, q = e-Zlr‘Jf = p‘. (See appendix C for definitions of notations. The last 
equality is due to (C.7).) This 5 factor was found by Freund and Zabrodin [13]. 

x=1 rq4 (4 + 9 s  rq4 (I + 9) rQ4 (3) 

Comparing (2.3.54) with (A.l2), we come to the following conclusion (cf 1121): 

S ( x )  o( R(h; it(1 - 48~) ) .  (2.3.57) 

3. Comments and discussions 

In this paper we have studied the eigenvectors of transfer matrix of higher spin 
generalizations of the eight-vertex model by means of the Bethe ansatz. Apparently the 
Bethe ansatz for these models seems to be less powerful compared to Bethe ansatz for the 
X X X  model, the XXZ model and their higher spin generalizations, since the number of 
quasi-particles (B operators) are restricted to N t .  However, we have a discrete parameter 
v instead. In chapter 2, varying this parameter, we restored all two-particle states which 
would degenerate to a singlet and a triplet in the limit, q + 0, i --+ 00. Therefore we can 
expect that the Bethe ansatz for our case gives as many eigenvectors as that for the rational 
and trigonometric cases. 

Developments of the theory of quantum affine algebras in the last decade provided 
algebraic tools such as vertex operators and a crystal basis for investigation of the models 
associated with trigonometric R-matrices. This kind of algebraic method is still hard to 
apply to the models associated with elliptic R-matrices because of the lack of knowledge 
of ‘elliptic affine algebras’ which should be an affinization of the Sklyanin algebra in an 
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appropriate sense. Foda et a[ [I21 proposed a candidate for this algebra. In their formulation 
a relation of the type RLL = LLR" plays an important role, where R* is essentially the 
S-matrix of two-particle states of the X Y Z  model. Their argument was based on Smimov's 
conjecture, which is supported by the result of the present paper. 

The algebra which Foda et al propose is considered to be~a  symmetry of the X Y Z  spin 
chain in a thermodynamic limit. We can also expect that their algebra is also a symmetry 
algebra for higher spin models which we considered in this paper. On the other hand, it is 
still not known whether finite size models could have a symmetry of the Sklyanin algebra, 
since a reasonable coproduct for the Sklyanin algebra has not yet been found. 

We considered only such excitations with finite number of holes and finite number of 
strings which have length A, A # Zl, even in the thermodynamic limit. This is because we 
wanted to determine the two-particle S-matrix. When we want to calculate thermodynamic 
quantities such as the entropy or specific heat of the model, string confi-pations with 
a non-zero hole density and non-zero densities of A-strings (A # 2.f) are essential. 
(See [39,33,20].) The extensive thermodynamics of the XXX, XXZ models and their 
generalization to higher spin cases has quite interesting features [29], and are also related 
to dilogarithm identities [2], [ZO]. Further study of the thermodynamic Bethe ansatz for 
higher spin generalizations of the eight-vertex model could give the deformation of the 
above features in rational and trigonometric models. 
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Appendix A. Review of the SMyanin algebra 

In this appendix we recall several facts on the Sklyanin algebra and its representations from 
[30] and [31]. We use the notation in [26] for theta functions: 

where T is a complex number such that Im(r) > 0. We denote t = i/r. The Pauli matrices 
are defined as usual: 
Go=(: y )  u I = ( y  A) u ' = ( ~  0 -i o )  u 3 = (  1 0  ) .  (A.2) 

0 -1 

The Sklyanin algebra, Uz,v(sl(Z)) is generated by four generators So, S', S2, S3, 
satisfying the following relations: 

R 1 z 0  - F)LoI(.\)Loz(F) = Loz(~)Lo~(h)R~z(h - p). (A.3) 
Here h, p are complex parameters, the L operator, L(A), is defined by 

3 
L(h) = W:(h)S" €3 U' 

0=0 
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R ( I )  = R(A; it) is Baxzer's R-matrir defined by 

R(A) = W;(A)u' Q U' W:(A): = W:(A + 0)  (A.3  
"=O 

and indices {O, 1,2)  denote the spaces on which operators act non-trivially: for example, 
3 3 

Il=O u=o 

R I Z ( ~ ) = ~ W ~ ( A ) ~ ~ U " O U "  Lol(A) = ~ W ~ ( A ) S " @ u a @ l .  

The above relation (A.3) contains I and j i  as parameters, but the commutation relations 

(-4.6) 
where (or, p ,  y )  stands for any cyclic permutation of (1,2,3),  [ A ,  B]* = A B  & B A ,  and 
J..p = (W: - Wg)/(W; - W;), i.e. 

among Sa (U = 0,. . . , 3 )  do not depend on them: 
n o  IS . S I- = -iJu.s[d, S~I+ [sa, S~I- = i[9, SYI+ 

The spin e represenrution of the Sklyanin algebra, p' : Ur,q(sl(2)) + End@$) is 

(A.7) 

defined as follows. The representation space is 

0, - I j ( z ) l  j ( z  + 1) = f ( - z )  = f(z), j ( z  + r )  = exp-&i(2+r' j ( z ) ] .  
It is easy to see that dim@$+ = 2e + 1. The generators of the algebra act on this space as 
difference operators: 

4e+ - 

where 

s0(z) = ell(q; r)eI1(2z; r )  
s ~ ( z )  = i8&; r)eW(2z; i) 

s l ( z )  = el0(v; r)eIo(zz; 7) 
SAZ) = OO1(v; r ) 8 0 ~ ( 2 ~ ;  7). 

These representations reduce to the usual spin t representations of U ( d ( 2 ) )  for Jap -+ 0 
(7 + 0). In particular, in the case e = 112, the Sa are expressed by the Pauli matrices U' 
as follows. Take (0,(2z; 2i) - Blo(2z; 2r),Ow(2z; 27) e 010(2z; 27)) as a basis of 0%. 
With respect to this basis the So have matrix forms 

(A.9) 

Since the relations (A.6) are homogeneous, an overall constant factor in a representation is 

e d o ;  r)eol(v; r)elo(v; z ) ~ ~ ~ ( v ;  i)uy, p"Z(S") = 2 e,(o; r)eol(o r)elO(0; 5)  

not essential. 

Sklyanin [31]: for a = 1,2,3, 
There are involutive automorphisms of the Sklyanin algebra Ur&!(2)) found by 

(A.lO) xu : (SO, S', Sh, SC) w (SO. sa, -Sh, -9) 
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where (U,  b, c)  is a cyclic permutation of ( I ,  2,3). Combining these operators with pe, 
we obtain another representation pe o X, of V,,,(sl(Z)), hut there is a unitary operator (I, 
intertwining p' and pe o X. [31]: 

(11 : 3 f(z) H ( ~ l f ) ( z )  = eZief z + ( '1 
(13 : 04 3 f ( z )  H ((13 f ) ( z )  = e nit  e nit(4z+i)f (. + I) 

and (I2 = U ~ U I .  Direct calculations show that Xu(pe(Sb)) = U;lpL(Sb)(I,. Operators U. 
satisfy the relations: (I: = (I,,(Ib = (-l)uub(I, = (I,. 

Baxter's R-matrix (AS) is a 4 x 4 matrix proportional to that in [37]: 

(A.ll)  

where functions a, b, c, d are defined by 

Obviously eigenvalues of this matrix are 

S, (+ - itv; ir) 
e, (9 + itq; ii) 
elo (9 - it?; it) 
elo (y +its; it) 

80, (+ - itv; it) 
e,,, (9 + itq; it) 
ell (+ -it?; it) 
ell (9 + itq: it) 

~ ( h )  + d(h)  = Cz U().) - d(h)  = Cz 

b(h) + c(A) = Cz b(h) - ~ ( h )  = Cz (A.12) 

Appendix B. Proof of the sum rule 

We prove here the sum rule of ).i's, theorem 1.4.1. See section 1.3 for notation. 

are defined by 
Let us introduce a determinant t'(h) of a ( r  - 1) x ( r  - 1) matrix, elements of which 

(1) (j, j + 1)-elements = h(h + 2 ( j  - !)VI; 
(2)  ( j ,  j)-elements = t (h  + 2 j q ) ;  
(3) ( j ,  j - l ) -eIements=h(h+Z(j+e)q);  
(4) other elements are 0, 

where f (A) is the eigenvalue of the transfer matrix T(A) on the Bethe vector %(hl, . . . , AM) 
and h(z) = ( 2 0 l l ( ~ ) ) ~ .  (This determinant is related to a fused model.) Since t(h) is an 
entire function of I (recall that the transfer matrix T(h)  itself is an entire function of A), 
t'(h) is an entire function of h. (In other words, the analyticity is a consequence of the 
Bethe equations as noted in section 1.3.) Our third assumption (see theorem 1.4.1) is 

(iii) t'(h) is not identically zero. 
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Let us define Fr(h) by 

Then because of (1.3.12) 

function 3(h )  is expressed as a determinant of a matrix such that 
(1) ( j ,  j + 1)-element = a+(h +2jq) ;  
(2)  ( j ,  j)-element = a-(A + 2 j 9 )  ++(A + 2j9) ;  
(3) ( j ,  j - 1)-element =a_@ + 2j9) ;  
(4) other elements are 0, 

where 

U-@) h(h + ZQ)Q(h - 29) 
a+(h) = h ( h  - Uv)Q(A + 277). 

This determinant can be easily expanded, the result being’ 

where 
ZC k-1 

MM = n h ( h  + 2(k - e  + j ) d  n Q(h -t 2jv) n Q(h + Z j v ) .  
j = I  j = l  j = k t 2  

B y  definition (1.3.11), Q(h) has automorphic property: 

&(A+ 1) = (-l)Ne-”Q(A) 
Q ( A  + 5 )  = e - = i N l ( l + r t U ) - n i r v t 2 r r i ~ ~ ,  A 

(B.3) 

Hence f ~ ( h  + 20) = f ~ + i ( U  (f,(h) = fa@)) and F(h)  = f d h )  + . . . + f , -~(h) has a 

’Q(U. 

period 29: F(h  4- 217) = F(h).  
Now we proceed in four steps. 

Step I. First we show that Q(h)F(A)/Q(A+2q).  . . Q(h+2(r- 1 ) ~ )  is an entire function 
of A. Since 

is an entire function of A, we have only to show that any zero of the denominator is not a 
zero of h(h + 2(E + 1 ) ~ ) .  . . h ( h  + 2(r - - 1 ) ~ ) .  Zeros of h(h) is 0 mod Z + Zr. Hence 
the last statement is true if assumption (i) of theorem 1.4.1 is fulfilled. 
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Srep 2.  We show that F(h)/Q(A + 2 7 ) .  . . &(A +Z(r - 1)q)  is an entire function of h. 
As a consequence of step 1, we know that the only possible poles of F ( h ) / Q ( A  + 

211). . . Q(A + Z(r - 1 ) ~ )  exist at zeros of Q(A). Suppose hj is a pole of F ( A ) / Q ( A  + 
211). . . Q(A + 2(r - 1)~) .  Then 

ord,F(h) < 0 r d ~ ~ ( Q ( l + 2 q ) . . . Q ( h + Z ( r  - 1)q)) ~ord~~F(h)+ordh ,Q(h) .  (B.5) 

Here ordi, is the order of zero at A j .  Assumption (ii) of theorem 1.4.1 says that there is an 
integer a such that ordij+uvQ(A) = 0. On the other hand periodicity F ( h  + 2q) = F ( A )  
implies that ordi,+2aF(h) = oldAj F(h). Therefore 

o rd i J+dQ(k  + 277). . .Q(h + 2(r - 1 ) d )  
=ord~~(Q(A+Z(a+ 1)d ... Q(h+Z(r+a-  I)?)) 
=ordiJ(e(h+2aq) ... Q(A++(r+a- 1)~ ) )  
=ordAj(Q(A+2q)...Q(A+2(r - I)?)) > ordijF(h) 
= orch,+kvF@) 
= 0rdAj+kn Q(V F(U.  (B.6) 

Here we used (B.3) and (B.5). This inequality means that Q(A)F(h)/(Q(A+Zq). . . Q(A+ 
2(r - I)?)) has a pole at Aj + k q .  This contradicts step.l. 

Step 3. Now we show that even F(&)/(Q(A)Q(A f2q) .  . . Q(A +Z(r - 1)~))  is an entire 
function of A. It follows from step 2 that for any j = 0, 1,. . . , r - 1 

is an entire function. Suppose F(h)/(Q(A)Q(h + 211). . . Q(A + 2(r - 1)q)) has a pole at 
ho. Then ho should be a zero of Q(h + Z j q ) ,  j = 0,. . . , r - 1. Taking (B.3) into account, 
this contradicts assumption (ii). 

Step 4. 
2q). . . Q(A + 2(r - 1)q). Using (B.3) and 

We have shown that F(h)/G(h)  is an entire function where G(h) ~= Q(h)Q(A + 

h(h + 1) = (-l)Nh(A) 
h ( ~  + ?) = e-niWl+r)-kiih(h) 

we obtain 

Holomorphy of FIG and periodicity (B.7) make it possible to expand F / G  into a Fourier 
series: 

(FIG)@) = ~ ( F / G ) , , e k i n i .  
nsz 

Substituting A. + r into this expansion and comparing with (B.8), we find that each 
coefficient should satisfy 

M 
(FIG). = (F/G),,exp[Zni((v-n)r - 2 c h j ) l .  

j= I 
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Since Ims > 0, there exists only one n = n2 such that (FIG),, ;f 0 and it satisfies 
(v - nz)t  - 2cj,l Aj =: -no E Z. Putting nl = v - nz, we have 2cEl A, =no + nl r .  

It follows from the above argument that t ' Q  has the following form with a suitable 
integer n: 

t'(A) = constant e2"'"*h(A+2(t + 1)q) ... h(A+2(r -1  - l)q)Q(A)'. 

M 

(B.9) 

Appendix C. Table of useful functions 

Here we collect properties of functions used in chapter II. 
Logarithm of quotient of theta functions. A function Q defined by (2.2.2). 

1 .9ll(x +ipt ;  it) 
I 81 I ( x  - ipt: it) 

Wx; ipt) = log +z 

has the following Fourier expansion if 0 < f i  c 1 / 2  

O0 sin hzn(1 - 2p)t . 
n sin hznt  

~ ( x :  ipt) = -2nx - ZC sin2nnx. 
n=l 

Hence 

A function Y defined by (2.3.29), 
1 
I 

6'01 (x + ipr: it) 
6'01 (x - ipt; ir) 

rV(x; ipt) = :log 

has the following Fourier expansion if 0 i p < 1 / 2  

Hence 
m sin h2znpt 

cos2zrzr. 
d 

- r ~ ( x ;  ipt) = 4n . 
dn sin hznr n=I 

Lemma C.2. For 0 c a < 6 ,  a series 
s f n h ~ n a ~ ~ ~ ~ ~  
sin hnnb ncZ 

is positive for x E 1. Here the term n = 0 is understood as a/b. 

Proof. Define a function f(y; x) by 
sinhzya 2niyr 

f ( y ;  x) = sin hzyb e 

f (0; x) = a/b. The Fourier transformation of this function is 
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By Poisson's summation formula we have 

This~proves the lemma. 0 

For example d / d x ( Q ( x ;  ipt)) c 0, because of lemma C.2. 
q-rfuncrion. A q-analogue of the r function is defined by 
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